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Fig. 4. Attenuation response of comb-line structures
(Case 6; Table I with C(8) =1 pF).

loss identical lines the impedance parameters are found to be

Z1l = Z22= z,?= Z44

= *[–Y’cotm. + zoo)+ CSC2Wk’d + Go’d)l
Z12 ‘Z21=Za4=Z43

= *[–j cot .9(Z0,– z..) + Csc’ O(zoe’ad – Zoo’sol) ]

Z14= Z23= 241= ZN
–j csc e. —– [(z., + zoo)+ j cot e(zo.’a,l + Zoo’sol) ]

2

ZN ‘z21=z?4=z49

——+=- [z.. – zoo)+ j cotO(ZOG”C%I– Zoo”a.l) ]

(7a)

(7b)

(7C)

(?d)

where d=pl. The admittance parameters are determined in a similar

manner utilizing voltage sources.

Losses in a given structure may then be calculated in terms of loss

duetoindividual sections asa function of frequency .Table I shows

the expressions for attenuation per section for some typical unit filter

sections consistiugof coupled Iineswith various boundary conditions

existing at individual ports of the structures.

The conductor loss per section as a function of frequency of some

useful slow wave structures (filters) isplotted in Figs. 2, 3, and4 for

some typical values of structure dimensions. These are calculated uti-

lizing the expressions given in Table 1 and the graphs for Cfe/,’,

Cf./J, and Cj//obtained by Getsinger [4]and Gupta [S] for coupled

rectangular bars.
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Computer-Aided Renormalized Perturbation

- Method for the Inhomogeneously

Loaded Waveguide

TAKEHIKO HIDAKA

Abstract—The renormalized perturbation method is applied to

the inhomogeneously loaded wavegnide. The second-order term

in the usual Rayleigh-Schri5dinger perturbation method is divergent

with respect to increasing the concerned mode number. Introducing

the phenomenological parameter by analogy to the quantum electro-

dynamics, we have the nondivergent second-order perturbation

term.

The Rayleigh–Rkz variational method and the finite-difference

solution method are adequate to the eigenvalue problems of the

inhomogeneously loaded waveguide, as shown in Fig. 1 [1 ]– [4].

Consumed computing time should be proportional to N8 for the solu-

tion of the NX N matrix in these procedures (N is the concerned

mode number in the R–R method, and in the finite-difference

method, it is the total number of mesh points [4]). Since the comput-

ing time accompanying the large N is very long, we may request a

more simple method for it.

The perturbation method has been believed to be applicable only

to problems that are very similar to exactly solvable problems [1].

The usual Rayleigh–Schrodinger perturbation method includes some

difficulties. The greatest difficulty is that the second-order (and/or

higher order) terms are divergent with respect to increasing the con-

cerned mode number, even if the loading is weak [7]. In thi8 cor-

respondence the extensive perturbation method, which excludes the

divergence, will be given.

The Rayleigh-Schrodin ger perturbation equation is described as

[5], [6]

(1)

where ~io and y,o are the propagation constants of the i and j mode

of the unperturbed waveguide, respectively, and rii is the perturba-

tion Hamiltonian

where I W;”) shows the normalized unperturbed eigenfunction of the

i mode, and L is the perturbation operator [5], [6].

We discuss a thin resistive film loaded waveguide as shown in

Fig. 1. In Fig. 1, if l/R. <(PO/CO). (d/b) is constant with respect to the

change of d/b, then the first-order perturbation term in (1) is con-

stant, and thus we call it the constant loading. Physically, it is ex-

pected that, according to d/b~O (i.e., R+O) under the constant load-

ing, the perturbed propagation constant Y{ goes near to yio, because

the d/b = O load gives no perturbation for the electromagnetic wave,

even if the load has high conductivity.

The result of Rayleigh–Schr6dinger calculation for constant load-

ing is shown in Fig. 1. At small d/b, i.e., small R, the calculated

propagation constant is divergent. This situation is the same as the
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Fig. 1. Example of the renormalized perturbation method for the Inhomogeneoudy
loaded waveguide. The l,oad (1,/R). 4-. d. fJ is 1.0, frequency 2a/ho is 1.4,
and a/b M 2.0. The load IS a thn-film resistor in the center of the waveguide.

divergence of the second-order perturbation in the quantum elec-

trodynamics [7].

The “Renormalization Theory” is introduced by analogy with

quantum mechanics to exclude the divergence. The perturbation

operator L’= -L +&La +&LP is substituted for L. in our renormalized

perturbation method. ISL~ and 3L@ are the new operators used to

cancel the real and imaginary part of the second-order term in (1)

(3)

which are divergent with d/b-+0 [7]. tfLa and fiLP are proportional to

1/ (d/b) and 1/ (d/b)z, respectively, in the region of small d/b:

6La = A.,. I/(d/b)

8LP = AP.l/(d/b)z. (4)

In computer-aided calculation, we cannot execute rtj for the infi-

nitely small d/b (at the same time infinitely small R) region and the

infinite summation of the second-order term in (1). To be finite, we

have to “cut off” the d/b value and the concerned mode number. For

actual computer calculation, first, we assume the dO/b value small

enough, and determine the factors A a and A p in (4) to cancel the

second-order term in (1) at this stage. For the region d> do, we pos-

tulate that these factors A. and A@ are constant. If d #dO, the second-

order term in (1) and 6L are not cancelled with each other. The

residual second-order term subtracted by 6L is the observed value at

d>d, [7].

An example is shown in Fig. 1. The concerned mode number is

24051, which cannot be treated by the variational method.

The load l/R. x/(p,/e,). (d/b) is 1.0. The cutoff value d,/b for

computer-aided calculation is 1/128 (R= 3@). The Rayleigh–

Schrodinger method shows the strong divergence, whereas our

renormalized perturbation method gives physically reasonable values.

The calculation time for our new method is proportional to N, which

is smaller than for the variational or finite difference methods.
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Gunn-Effect Power Limiter

C. S. AITCHISON AND R. DAVIES

Abstract—The possibility of using the nonlinearity of the Gmm

device current-voltage characteristic to provide microwave power

limiting is discussed. Initial puked and CW results are presented

which demonstrate liiiting action.

1. INTRODUCTION

The use of the Gunn effect in an oscillator is well known. Little

attempt has been made to exploit the nonlinear nature of the Gunn

effect mechanism for other applications such as mixers, harmonic

generators, parametric amplifiers, and limiters.

Sterzer [1] has used the Gunn effect to construct an amplitude

modulator. Aitchison [2] and others have observed parametric

amplification.

This correspondence suggests that the Gunn-effect device could be

used as a microwave power limiter.

II. DISCUSSION

It is known that the Gunn-effect dc current–voltage characteristic

is nonlinear and, while varying from sample to sample, is often of the

form shown in Fig. 1; only some of the apparent nonlinearity is due

to heating.

Work at microwave frequencies at Mullard Research Laboratories

has demonstrated that a similar characteristic is available up to

3 GHz and it will be assumed in this discussion that this characteristic

exists beyond 3 GHz.

The application of a microwave signal to a Gunn sample mounted

in shunt with a transmission line of suitable impedance will produce

a voltage across the Gunn sample; the current which flows will be a

function of the applied bias and the magnitude of the voltage. A

Fourier analysis of the current will show a mean (de) component plus

a component at the incident frequency (plus other components at

higher frequencies which are neglected). Both the mean component

and the incident frequency component will ‘be functions of power

level and the detailed behavior will be a function of the low signal

bias.

In particular, the small signal conductance at the turnover point

will be zero and using an established simple equivalent circuit of the

Gunn sample in the form of a shunt capacitance and a shunt con-

ductance we may expect a Gunn sample placed across a transmission

line to have a small insertion loss when the appropriate bias is applied.

Increase in applied power at the incident frequency will have two

effects-both of which will introduce a finite insertion loss thereby

giving a limiting action. The mean value of conductance will change,
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