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Fig. 4. Attenunation response of comb-line structures
(Case 6; Table I with C(6) =1 pF).

loss identical lines the impedance parameters are found to be
Zu=Zy=1L2y=7Zu

=3[~ cot 0(Zoe + Zoo) + 52 0(Zosatsl + Zoger,1)] (7a)
Ziyw=Zan=Zyu=2Zy
= 3[—f ot 8(Zoe — Zoo) + c5c 0(Zodtsl — Zogwo1)] (7b)
Zie=Zy=Zy=2ZLsn
csc @
= —‘% [(ZOG + Zoo) +] cot G(Zocrael + Zoo 0501)] (7(3)
Zu; = Z31 =Zou= Z42
s 0
= L (e — Zao) + j cot 8Zuraed — Zoyad)]  (74)
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where 8 =31. The admittance parameters are determined in a similar
manner utilizing voltage sources.

Losses in a given structure may then be calculated in terms of loss
due to individual sections as a function of frequency. Table I shows
the expressions for attenuation per section for some typical unit filter
sections consisting of coupled lines with various boundary conditions
existing at individual ports of the structures.

The conductor loss per section as a function of frequency of some
useful slow wave structures (filters) is plotted in Figs. 2, 3, and 4 for
some typical values of structure dimensions. These are calculated uti-
lizing the expressions given in Table I and the graphs for Cp.:/,
Crosd, and Cy/ obtained by Getsinger [4] and Gupta [5] for coupled
rectangular bars.
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Computer-Aided Renormalized Perturbation
Method for the Inhomogeneously
Loaded Waveguide

TAKEHIKO HIDAKA

Abstract—The renormalized perturbation method is applied to
the inhomogeneously loaded waveguide. The second-order term
in the usual Rayleigh-Schridinger perturbation method is divergent
with respect to increasing the concerned mode number. Introducing
the phenomenological parameter by analogy to the quantum electro-
dynamics, we have the nondivergent second-order perturbation
term.

The Rayleigh—Ritz variational method and the finite-difference
solution method are adequate to the eigenvalue problems of the
inhomogeneously loaded waveguide, as shown in Fig. 1 [1]-[4].
Consumed computing time should be proportional to N? for the solu~
tion of the N XN matrix in these procedures (N is the concerned
mode number in the R-R method, and in the finite-difference
method, it is the total number of mesh points [4]). Since the comput-
ing time accompanying the large N is very long, we may request a
more simple method for it.

The perturbation method has been believed to be applicable only
to problems that are very similar to exactly solvable problems {t].
The usual Rayleigh-Schrsdinger perturbation method includes some
difficulties. The greatest difficulty is that the second-order (and/or
higher order) terms are divergent with respect to increasing the con-
cerned mode number, even if the loading is weak [7]. In this cor-
respondence the extensive perturbation method, which excludes the
divergence, will be given.

The Rayleigh~Schrédinger perturbation equation is described as
5], [6]

’Yi=‘Yz°+Pzi+Z ﬁ.i’o_f_ e

iz v — v

()

where v;° and «,° are the propagation constants of the ¢ and j mode
of the unperturbed waveguide, respectively, and I';; is the perturba-
tion Hamiltonian

Ty = (v,0| L] w9 @

where )\I/i") shows the normalized unperturbed eigenfunction of the
i mode, and L is the perturbation operator [5], [6].

We discuss a thin resistive film loaded waveguide as shown in
Fig. 1. InFig. 1, if 1/R-+/(uo/eo) - (/) is constant with respect to the
change of d/b, then the first-order perturbation term in (1) is con-
stant, and thus we call it the constant loading. Physically, it is ex-
pected that, according to 4/b—0 (i.e., R—0) under the constant load-
ing, the perturbed propagation constant v; goes near to ;% because
the ¢/6=0 load gives no perturbation for the electromagnetic wave,
even if the load has high conductivity.

The result of Rayleigh~Schrédinger calculation for constant load-
ing is shown in Fig. 1. At small d/b, i.e., small R, the calculated
propagation constant is divergent. This situation is the same as the
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Fig. 1. Example of the renormalized perturbation method for the inhomogeneously

loaded waveguide. The load (1/R)- v (u-eo) +d-b is 1.0, frequency 2a/hois 1.4,
and ¢/b is 2.0. The load is a thin-film resistor in the center of the waveguide.

divergence of the second-order perturbation in the quantum elec-
trodynamics {7].

The “Renormalization Theory” is introduced by analogy with
quantum mechanics to exclude the divergence. The perturbation
operator L' =L-8L.+38Lg is substituted for L in our renormalized
perturbation method. 8L, and 5L are the new operators used to
cancel the real and imaginary part of the second-order term in (1)

$Le = — Relim >, —2 L5
-0 jzi yd — v;°

8Lg = — Im lim », —2 -2 3)
a0 a7’ — vt

which are divergent with d/6—0 [7], 8L, and 5Lg are proportional to
1/(d/b) and 1/(d/b)?, respectively, in the region of small d/b:

0Ly = Ao-1/(d/b)
8Lg = Ag-1/(d/b)2. @)

In computer-aided calculation, we cannot execute I'y; for the infi-
nitely small d/b (at the same time infinitely small R) region and the
infinite summation of the second-order term in (1). To be finite, we
have to “cut off” the d/b value and the concerned mode number. For
actual computer calculation, first, we assume the do/b value small
enough, and determine the factors 4, and Ag in (4) to cancel the
second-order term in (1) at this stage. For the region d>d,, we pos-
tulate that these factors 4, and 4g are constant. If dd,, the second-
order term in (1) and 8L are not cancelled with each other. The
residual second-order term subtracted by 8L is the observed value at
a>d, [7].

An example is shown in Fig. 1. The concerned mode number is
24 051, which cannot be treated by the variational method.

The load 1/R-~/(uo/eo) - (d/b) is 1.0. The cutoff value dq/b for
computer-aided calculation is 1/128 (R~3QY). The Rayleigh—
Schrodinger method shows the strong divergence, whereas our
renormalized perturbation method gives physically reasonable values.
The calculation time for our new method is proportional to N, which
is smaller than for the variational or finite difference methods.
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Gunn-Effect Power Limiter
C. S. AITCHISON anp R. DAVIES

Abstract—The possibility of using the nonlinearity of the Gunn
device current—voltage characteristic to provide microwave power
limiting is discussed. Initial pulsed and CW results are presented
which demonstrate limiting action.

I. INTRODUCTION

The use of the Gunn effect in an oscillator is well known. Little
attempt has been made to exploit the nonlinear nature of the Gunn
effect mechanism for other applications such as mixers, harmonic
generators, parametric amplifiers, and limiters.

Sterzer [1] has used the Gunn effect to construct an amplitude
modulator. Aitchison [2] and others have observed parametric
amplification.

This correspondence suggests that the Gunn-effect device could be
used as a microwave power limiter.

I1. DiscussioN

It is known that the Gunn-effect dc current—voltage characteristic
is nonlinear and, while varying from sample to sample, is often of the
form shown in Fig. 1; only some of the apparent nonlinearity is due
to heating.

Work at microwave frequencies at Mullard Research Laboratories
has demonstrated that a similar characteristic is available up to
3 GHz and it will be assumed in this discussion that this characteristic
exists beyond 3 GHz.

The application of a microwave signal to a Gunn sample mounted
in shunt with a transmission line of suitable impedance will produce
a voltage across the Gunn sample; the current which flows will be a
function of the applied bias and the magnitude of the voltage. A
Fourier analysis of the current will show a mean (dc) component plus
a component at the incident frequency (plus other components at
higher frequencies which are neglected). Both the mean component
and the incident frequency component will be functions of power
level and the detailed behavior will be a function of the low signal
bias.

In particular, the small signal conductance at the turnover point
will be zero and using an established simple equivalent circuit of the
Gunn sample in the form of a shunt capacitance and a shunt con-
ductance we may expect a Gunn sample placed across a transmission
line to have a small insertion loss when the appropriate bias is applied.

Increase in applied power at the incident frequency will have two
effects—both of which will introduce a finite insertion loss thereby
giving a limiting action. The mean value of conductance will change,
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